

University of Western Brittany European Institute for Marine Studies

Omani upwelling dynamics: when eddies get involved

1

Plan

- Introduction
- Methods and data
- Results of the Observation
- Results of the HYCOM data
- Idealized simulation (CROCO) result
- Conclusion

Introduction

Figure 1: Satellite image showing the general context and the study domain. Presence of upwelling and eddies

Aims

The goal of this work is to study the dynamic of the Omani upwelling in the presence of these vortices

Does the presence of a tripole or a vortex weaken or strengthen the upwelling?

Data from observations

- $\Box \quad SSH \quad \rightarrow \quad AVISO \text{ altimetric data (provided by CLS)}$
 - SST \rightarrow Provided by NOAA (National Oceanographic Data Center)
- \Box Wind \rightarrow Reanalyses of CMEMS (my.cmems-du.eu) (Mercator Ocean)
 - \rightarrow Resolution: 1/4°

Models output

HYCOM (Hybrid Coordinate Ocean Model)

 \rightarrow hybrid coordinates (isopycnal and z)

 \rightarrow horizontal resolution 5 km

 \rightarrow 40 vertical levels

CROCO model

- ✤ Wind
- ✤ Wind stress
- $\mathcal{T} = \rho_a C_d |V_a| V_a$ Cd \approx 1.210-3
- Wind stress curl

$$\vec{\nabla} \wedge \vec{\mathcal{T}} \mid_{z} = \frac{\partial \mathcal{T}_{y}}{\partial x} - \frac{\partial \mathcal{T}_{x}}{\partial y}$$

Arabian surface wind speed (2000-June)

Figure 2: Monthly mean of the wind speed (summer 2000).

✤ SSH

Results of the Observation

- \succ period of occurrence
- Annual and inter-annual variation

Inter-annual variation of SST, WSC and the appearance of upwelling

Low WSC Value:

 \rightarrow Upwelling

 \rightarrow Negative SST Anomaly

 A drop in temperature ranging from 0.5 to 1.2°C

Figure 5: Inter-annual variations in OHS, OHS anomaly and WSC in the Arabian Sea and its Gulfs from 2000 to 2015; the solid blue curve and the dashed red curve in (a) represent the SST for the AVISO and HYCOM data, respectively; the red curve (b) represents the SST anomaly and the black curve (c) the rotational wind pressure WSC.

Inter-annual variation of SST, WSC and the appearance of upwelling

Figure 5: Inter-annual variations in OHS, OHS anomaly and WSC on the Omani coast from 2000 to 2015; the solid blue curve and the dashed red curve in (a) represent the SST for the AVISO and HYCOM data, respectively; the red curve (b) represents the SST anomaly and the black curve (c) the rotational wind pressure WSC.

Annual cycle and interannual variability of upwelling

Figure 6: Annual variation of SST (a, c) and WSC (b, d) throughout the Arabian Sea (a, b) and in the upwelling region (c, d); on average over the period 2000-2015.

- Its appearance corresponds to the low values of SSH and SST near the coast
- The HYCOM data are well correlated with the observation data

Results of the HYCOM data

- > Vertical profile of upwelling
- > Vertical velocity

Oman Upwelling index

Figure 7: Monthly variation of upwelling index between 2000 and 2008 on the coast of Oman.

Index = (rho_winter - rho_summer)/rho_winter

Description of the upwelling from the HYCOM model

Temperature profile and density

 A drop in temperature ranging from 2 to 5.5°C between July and August

Figure 8: Vertical profile of the temperature perpendicular to the Omani coast; the black contours represent the isopycnals during the upwelling season (June, July, August and September).

Upwelling depth, temperature profil (2000-September)

15

Description of the upwelling from the HYCOM model

Figure 9: Vertical profile of the temperature perpendicular to the Omani coast; the black contours represent the isopycnals during the upwelling season (June, July, August and September).

A 1 psu drop in salinity
the vertical signature of the upwelling is observed to a depth of 400m

Description of the upwelling from the HYCOM model

Vertical velocity

Figure 10: Vertical velocity profile perpendicular to the Omani coast during the upwelling season.

vertical velocity profil ⊥ to de coast (2000-June)

Idealized simulation (CROCO) result

Idealized simulation : (CROCO)

- \rightarrow Horizontal resolution: 10 km
- \rightarrow The wind stress is set at 0.075N m- 2
- \rightarrow Vertical levels: 30
- \rightarrow Vortices radius: 100 km

Étude de la dynamique de l'upwelling: impact des tourbillons

500

250

2000

1750

1500

1250

750

250

Ę 1000

Figure 11: Variation of the SST; temporal evolution of a tripole in the presence of the upwelling front and their effects with beta effect. The vortices have a radius of 100 km

km

Étude de la dynamique de l'upwelling: impact des tourbillons

Conclusion

- The Omani upwelling starts in June with an inversion of wind direction (N-E to S-W) and an increase in force
- It can extend down to a depth of 400m with vertical speeds in the order of 0.2 to 0.9 m/day
- The tripole which formed during the upwelling period has a large effect on the upwelling signature in presence of Rossby waves
- The cyclone influenced the upwelling less than the anticyclone with or without the beta effect

 vertical profile of upwelling and tripole effect

Étude de la dynamique de l'upwelling: impact des tourbillons

Interaction between an upwelling and an anticyclone

Figure 13: Variation of the SST; temporal evolution of an anticyclone in the presence of the upwelling front with beta effect. The vortices have a radius of 100 km.

Étude de la dynamique de l'upwelling: impact des tourbillons

Interaction between an upwelling and a cyclone

Figure 14: Variation of the SST; temporal evolution of an cyclone in the presence of the upwelling front with beta effect. The vortices have a radius of 100 km.